Cooperative R&D in Japan and Korea: a comparison of industrial policy

Mariko Sakakibara a,∗, Dong-Sung Cho b

a Anderson Graduate School of Management, University of California, 110 Westwood Plaza, Los Angeles, CA 90095-1481, USA
b College of Business Administration, Seoul National University, Kwanak-ku, Seoul 151-742, South Korea

Received 15 February 2000; received in revised form 15 March 2001; accepted 13 June 2001

Abstract

This article compares and evaluates Japanese and Korean industrial policies aimed at promoting the research activities of firms, with focus on government-sponsored R&D consortia. Korean R&D promotion policies were introduced 20–30 years later than Japan. In contrast to the Japanese case, Korean protective industrial policies prolonged and encouraged the duplication of technological capabilities among the major chaebols. Korean R&D consortia did not fully promote R&D cooperation, knowledge-sharing, or scale economies equivalent to the Japanese level. The organizational and institutional structure which developed under Korean industrial policy became an obstacle to the effective implementation of cooperative R&D. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: R&D consortia; Japan; Korea; Industrial policy; R&D promotion

1. Introduction

The post-war economic growth of Japan has been spectacular, and this experience has been studied extensively (for a survey, see Ito, 1996). In particular, the role of industrial policy in the Japanese “economic miracle” has been a subject of considerable debate.1 Among those who identify industrial policy as critical to Japanese development, cooperative R&D is perceived as the single most important tool of the post-war Japanese industrial policy (for example, Okimoto, 1989).2 The most celebrated example of Japanese cooperative R&D is the 1975 very large-scale integrated circuit (VLSI) project, designed to help Japan catch-up with the US in semiconductor technology. This project was widely regarded as a success, as evidenced by Japanese semiconductor companies’ world leadership after the project. While this success story is best known, it is widely believed that it is only one of many. In addition, the US and European countries introduced their own industrial policies which attempted to follow this practice. Beginning in the 1960s several other Asian nations succeeded in achieving high rates of economic growth.

1 See Eades and Yamamura (1987) for a summary of competing views.
2 Cooperative R&D is defined here as an agreement among a group of firms to share the costs and results of an R&D project prior to the execution of that project. In this article, we use cooperative R&D, cooperative R&D projects, and R&D consortia interchangeably.
The Republic of Korea (hereafter Korea) is widely regarded as one of the most successful of the developing Asian countries (Christensen and Cummings, 1981), which, like many other high-performing Asian countries, followed the path of the “Japanese model”, including extensive government intervention and its own version of cooperative R&D projects.

It was commonly believed that Japan’s VLSI project in 1975 was successful for the following reasons. First, the Japanese government (notably the Ministry of International Trade and Industry (MITI)) targeted a limited number of promising sectors. Second, participants, who were at the same time direct competitors in the same industry, were willing to cooperate with each other and share costs to pursue a large-scale project. As a result, in the economic theoretical literature on cooperative R&D, the focus has mostly been on the effect of cost sharing in R&D on subsequent competition. In both the managerial and public policy literature, on the other hand, the focus has been on case studies of a small number of consortia, particularly those which have been formed in the semiconductor and computer sectors, with attempts to generalize the “success formula” from these limited examples. For example, see Katz and Orloff (1990), Fransman (1990), Murphy (1991), Ouchi and Bolton (1988), and Dunning and Robson (1988). Comprehensive empirical research on this issue is almost non-existent, except for Irwin and Klenow (1996), Link et al. (1996), and Branstetter and Sakakibara (1998, 2001). It is expected that an analysis based on large data sets will provide policy lessons to other countries seeking to emulate Japan’s success through the application of this particular style of industrial policy.

This article compares and evaluates Japanese and Korean industrial policies aimed at promoting the research activities of firms, with a focus on government-sponsored R&D consortia. Our particular concern is the implications of this kind of industrial policy on both the organization of firms and national innovation systems. Korea is known as a diligent follower of Japanese industrial policy. During the post-World War II period, Korea introduced Japanese-style industrial policy with an approximately 10–15-year lag. However, the lag widened to 30 years when it came to the introduction of significant R&D promotion policies in Korea in general, and cooperative R&D promotion policy in particular.

Closer examinations of the structure of Korean R&D consortia reveal that Korean R&D consortia did not fully promote R&D cooperation, knowledge-sharing, or scale economies equivalent to the Japanese level, even to the level reached by Japan in the 1960s. The organizational and institutional structures developed under Korean industrial policy became an obstacle to the effective implementation of cooperative R&D. This limitation of Korea’s R&D strategy has important implications for many other developing countries that try to model after Japan and Korea in their technology build-up.

This article is organized as follows. Section 2 presents some macroindicators of Korean performance in R&D vis-à-vis comparable countries to evaluate its R&D promotion policies. Korea made remarkable progress in its R&D efforts, but it was only in the 1990s when its R&D efforts finally became comparable to some western developed countries such as Germany and France, though its R&D performance in absolute terms still lagged behind major countries including Japan. Section 3 is an overview of industrial policies in Japan and Korea, with focus on R&D promotion policies. In this section, we emphasize the timing and the context of the introduction of policy tools, and organizational and institutional outcomes. Section 4 focuses on a comparison of government-sponsored R&D consortia in Japan and Korea, comparing 237 Japanese and 184 Korean consortia. Korean consortia are found to be much smaller, with fewer participants and shorter duration than Japanese equivalents in the 1960s. Section 5 discusses the organizational implications of cooperative R&D. Finally, this article concludes in Section 6.

2. Evaluation of Korean R&D performance

Korea has achieved remarkable economic development as one of the Asian “Tigers”, the source of this achievement has been analyzed in many studies (for example, see Jones and Sakong, 1980; The World Bank, 1993). In this section, we focus on Korea’s performance in R&D, and identify its current status vis-à-vis those of other developed and comparable countries.

The R&D performance of a country can be evaluated from two perspectives: R&D input and R&D
output. Fig. 1 presents the ratio of R&D expenditures to GDP for selected countries, and demonstrates that Japan attained similar levels to western countries in the 1970s. Korea increased its R&D intensity steadily, but it was not until in the 1990s when Korea finally reached the level of western countries. The growth rate of R&D intensity by Korea surpasses that of Japan and Taiwan, with the Korean growth rate being especially high in the 1980s and the 1990s. However, Fig. 2, which presents the R&D expenditures in constant US dollars, shows that in absolute terms, Korea’s R&D expenditures still fall behind those of major countries. Cross-country comparison of R&D expenditures requires cautious interpretation. Japan’s rapid increase in R&D expenditures in dollar terms after 1985, for example, is due to the appreciation of the yen. Even with this limitation in mind, Fig. 2 still shows that Japan has caught-up with European countries in terms of absolute R&D expenditures. Korea, whose GDP is one-eleventh of Japan in 1995, has a long way to go in terms of the development of its R&D capabilities.

The number of patents is frequently used as a measure of R&D output because of its availability. Figs. 3 and 4 show the number of patents granted in the US for foreign countries. The propensity to patent in the US differs by country according to its current and potential market presence in the US. For many Asian countries, the US is the single most important export market, which helps to justify the use of patenting in the US as a measure of R&D output. This measure, however, favors countries that concentrate on electronics related industries (especially Taiwan and Korea), because in those industries a greater number of patents are typically granted to cover a single product/invention than in the machinery or chemical industries. Fig. 3 illustrates that Korea along with Taiwan surpasses other “comparable” countries.

3 Data sources of this analysis are summarized in Appendix A.

4 It is a difficult task to compare R&D output across countries, because available measures of R&D output are not perfect. The main problems of using patents as a measure of R&D output are that the quality of patents varies significantly, and the propensity to patent differs by industry.

5 The share of electrical equipment in total R&D expenditure between 1991 and 1995 was 49.3% for Taiwan, 49.2% for Korea, 34.5% for Japan, and 12.2% for the US.
Fig. 2. R&D expenditures (in 1980 US$ million).

Fig. 3. US patents granted to Korea and comparable countries.
in US patenting. It is apparent from this figure that Korea “took off” in R&D output in the 1990s. Fig. 4, however, shows that Korea is still behind Japan and major western countries in R&D output.

Fig. 1 through Fig. 4 illustrate that Korea achieved dramatic improvements in its R&D capability over the last three decades. However, it is only in the 1990s when Korean R&D efforts finally became comparable to developed countries, including Germany and France. At the same time, Korea’s R&D performance in absolute terms still lagged behind major countries including Japan.

From a broader perspective, Korean R&D performance can be inferred from its total factor productivity growth, that is, an increase in output per unit of input over time. Total factor productivity growth can be achieved by an efficient use of resources (e.g. advances in management) as well as technical progress, so the existence of total factor productivity growth is a necessary but not a sufficient condition for superior technological performance. There are extensive debates on the technical progress of Asian NICs (Christensen and Cummings, 1981; Tsao, 1985; Dollar and Sokoloff, 1990; Young, 1992, 1995; Kim and Lau, 1994, 1996; Krugman, 1994). The most pessimistic view is presented by Kim and Lau (1994), who argue that the hypothesis that there has been no technical progress during the post-war period cannot be rejected for Korea, Hong Kong, Singapore and Taiwan. Capital accumulation accounts for between 68 and 85% of the economic growth of those countries. In contrast, technical progress accounts for 39% of Japanese and 49% of the US economic growth. Contrary to a more conventional view, Dollar and Sokoloff (1990) argue that during the period 1963–1979, Korean total factor productivity growth was much higher in medium and light industries than in heavy industries. They also argue that capital over-investment occurred in heavy industries due to extensive capital subsidies provided to these industries, suggesting a limitation of the “targeting” policy. Young (1995) shows that Korea’s total factor productivity growth
was 1.7% per annum, not higher than that of developed countries. Though there are ongoing debates about the contribution of the technical progress on the economic growth in Korea and other Asian countries, these observations are consistent with our findings of Korean R&D performance: the Korean economy has achieved extraordinary growth, but the source of this growth is an increase in inputs, especially physical capital, while Korea’s technological level still lags behind industrialized western countries and Japan.

In the following sections of this article, we focus on the development and differences between the R&D promotion policies of Japan and Korea to explain some of the reasons for Korea’s lags in R&D performance and technological levels.

3. R&D promotion policy in Japan and Korea

There are two sets of industrial policies that affect R&D activities: one is a set of policies that intends to achieve broad goals but have a far-reaching impact on R&D and technological progress, and the other is a set of policies that is targeted to promote R&D. In this article, we examine both sets of industrial policies.

A notable post-war industrial policy that had a broad objective and a significant effect on R&D promotion in Japan was the Foreign Capital and Foreign Exchange Control Law. Based on these laws, the Japanese government allocated its scarce foreign currency selectively to those firms capable of adapting and improving import technology in order to encourage the importation of advanced technology and to promote a domestic technology base. By limiting the number of potential licensees, these laws effectively worked to increase the bargaining power of technology buyers and to limit royalty payments (Goto and Wakasugi, 1984). Japanese policies restricted imports and direct investment until 1964 when Japan obtained the status of an article eight country in IMF and liberalized import and capital inflows (some restrictions on capital flows continued until 1973). These policies profoundly influenced how Japan built its domestic technology base. Without having the option to export their products or to establish their production base in Japan, the only way foreign firms were able to profit from their technology in Japan was to sell the technology (Odagiri and Goto, 1993). The restriction of imports and direct investment, therefore, facilitated technology transfer from western countries to Japan in the early post-war era. The restriction also worked to protect domestic firms from foreign competition, which potentially helped domestic firms to earn higher rents and allowed them to invest in R&D.

There is evidence, however, that intense competition among domestic firms existed in the industries which later became world-class industries (for example, see Porter, 1990; Porter et al., 2000). Empirical evidence shows that there is a significant positive correlation between the amount of royalty payment for imported technology by industries or firms and their R&D expenditures (Blumenthal, 1976; Odagiri, 1983). This positive correlation indicates that firms which imported technology also invested in their own R&D efforts, driven by either protection or competition, to adopt and improve upon imported technology and build-up their own technology capabilities. Fig. 1 confirms that Japanese R&D expenditures already reached the level of developed countries in the early 1970s.

Direct policy tools to promote R&D activities can be classified into three categories. They are: (1) direct support of private R&D efforts in the form of subsidies, preferential tax measures, and the supply of low-interest loans; (2) contribution to research conducted in Universities and National Research Institutions; and (3) promotion of cooperative research through technology research associations and other forms.

Direct support of private R&D efforts was introduced in Japan through a variety of programs during the early post-war period, mostly in the 1950s. However, the size of the incentives provided through tax breaks, subsidies, and low-interest loans were modest. In total, they amounted to little more than a 100 billion yen in 1983, or 2.6% of the year’s total industrial R&D expenditures, which declined from 8% in 1960 (Odagiri and Goto, 1993).

Budgetary contributions to research conducted in Universities and National Research Institutions by the Japanese government were also modest. In 1970, for example, the government share of the national R&D expenditures was 25% in Japan, compared to 57% in the US, 45% in Germany, 64% in France, and 50% in the UK (Science and Technology Agency, 1990).
The government share to national R&D expenditures declined in all these countries over the next two decades, but the share of the Japanese government remained the lowest in the 1990s (OECD, 1996). We will discuss the promotion of cooperative research in the next section.

In sum, the R&D efforts in Japan were mostly driven by the private sector. Industrial policy in a broad sense played an important role to give companies an incentive to conduct R&D. Though protection was given to industries, early protection did not spoil active R&D investment by companies. Korea’s industrial policy started in the early 1960s, and took the form of a series of five-year economic development plan (FYEDP). The first FYEDP started in 1962, aimed at promoting import-substituting industries. In order to promote the targeted industries, the government provided many policy tools, including import restrictions, tax incentives, custom rebates, and selected promotion of inward foreign direct investment (Taniura, 1989). The government soon shifted the target to export-oriented industries to repay foreign loans (Cho, 1997). In the second FYEDP starting in 1967, industries such as steel, shipbuilding, electronics, and petrochemicals were promoted. The promotional policies for these industries were accompanied by policies that directly shaped industrial structure, including entry restrictions for targeted industries, allocation of export rights to specific markets, and allocation of product lines among incumbents in a specific industry (Kodama, 1995).

In the third FYEDP starting in 1972, the government instituted the General Trading Company (GTC) in order to further promote exports. Only the major groups of companies were de facto allowed to start the GTC (Cho, 1987). These companies began to massively diversify into unrelated fields through acquisition in order to secure exportable products, transforming themselves to chaebol (IEBM, 1999). The government also favored chaebol over independent companies when they gave licenses for entering targeted industries. In so doing, the government expected that chaebol would realize the economies of scale and scope and develop exportable products from the targeted industries (Kim, 1993).

In order to expedite the development of export industries, the Korean government promoted assembly industries of final goods. This policy prompted importation of foreign capital goods. In the assembly industries of machinery and electronics, firms often depended on reverse engineering as a major source of learning. Large firms across industries have resorted heavily to foreign sources, notably in the form of acquisition of plants on a “turnkey” basis, in order to ensure quick construction and smooth start-up. Indigenous research was, therefore, not aggressively pursued through the early 1970s (Kim, 1993).

The first Korean R&D promotion policy can be found in the Technology Development Promotion Law of 1972. The role of the government in R&D promotion was limited to the establishment of national research to support industrial technological learning, and funding university R&D. The Korean government, however, did not play a significant role in R&D promotion until the 1980s. Among the 18 industrial policies initiated by the Ministry of Science and Technology (MOST) between 1967 and 1993, only three were recorded before 1980 (Cho, 1994).

The 1981 amendment of the Technology Development Promotion Law facilitated various tools to promote private R&D. Compared to the previous industrial policy of the 1970s, the new policy was geared toward both direct and indirect promotion of technology-intensive industries in their R&D stages. The indirect R&D promotion programs

8 One might argue that the R&D budget by non-Japanese governments includes defense-related spending, and so the comparison between the total government R&D budgets of non-Japanese countries and that of Japan is not a fair comparison. Indeed, the US defense-related R&D budget accounts for 57% of the total R&D budget between 1960 and 1992, compared with 5% in Japan. However, many US R&D consortia including Sematech and the flat-panel display development project are funded from the defense budget, and so the distinction between the civilian and defense budgets is not important for the argument of government funding of R&D (Sakakibara, 1997b).

9 Although the MOST was established in 1967, its role was not clearly defined in the early period.

10 The direct promotion programs for technology-intensive industries included: subsidies for research expenses (designated R&D project expenses); exemptions of tariffs, special consumption taxes and value-added taxes; reduction of taxes up to 10% of R&D allotments; and priority purchase of products from cooperative development. In addition, the promotion programs offered firms preferential loans to set-up new laboratories and exemptions of their key R&D personnel from the obligation of military service.
also allowed the Korean government to help establish industrial technology research consortia, and enabled the government to promote specific R&D projects through these consortia.

The role of the Korean government in R&D promotion has been limited, compared to R&D promotion through policies that have broad objectives, however. For example, in the 1990s, government R&D funding accounted for 20% of total Korean R&D expenditures (Ministry of Science and Technology, 1994), while the rest of the R&D projects were financed by the private sector, mostly affiliates of the chaebol groups. These companies enjoyed monopoly rents in the Korean market that were protected by the government from imported products and entry threats. Though the Antitrust Law was enacted in 1980, the enforcement was not effective enough to preclude the chaebol affiliates from exchanging personnel within the group, and underwriting R&D expenditures for new businesses attempted by other group firms. Korean R&D is, therefore, driven by chaebol-affiliated companies, especially after the 1980s. Korean industrial policy explicitly protected and promoted these large corporations.

Table 1 summarizes and compares the timing of the introduction and abolition of various R&D-related industrial policies in Japan and Korea. There are several important observations one can make from this table. First, Korea followed Japanese industrial policies, especially so-called “targeting” policies very quickly, with an approximately 10–15-year lag. However, Korea did not “graduate” from protective policies until approximately 30 years after the “graduation” of Japan. This means that there has been a prolonged existence of protective policies and the promotion of “targeted” industries in Korea. Also, the implementation of Korean R&D policies was much delayed, with a 20–30-year lag from that of Japan. These phenomena may be partially attributed to the fact that Korea’s industrial policies in general do not include graduation dates, although it is hard to determine the causality between these two facts.

There are many implications one can draw from the differences between Japanese and Korean R&D promotion policies. In Korea, imports of technology occurred in the form of import in capital goods and reverse engineering, especially the import of the whole “turnkey” system. This implies that firms have to simultaneously digest all stages of the value chain, from basic research, product and process development, to production. In addition, in order to catch-up with Japan and other developed countries quickly, Korean firms had to radically shorten this digestion process. In a Korean automobile manufacturer’s case, it took only 2 years for the company to advance from a licensing contract to producing a car. Being under severe time pressure, Korean firms had limited room to develop their own capabilities at each activity of the value chain.

In contrast, in Japan, the introduction of foreign technology was mainly through licensing of essential technologies. The replacement of imported technologies with domestic technologies in development and production occurred in Japan much earlier than in Korea. Also, activities of the later stage of the value chain were sometimes conducted domestically in the first place. The shift from technology licensing to domestic R&D occurred in the 1960s when the technology cycle was still relatively long. Japanese firms were, therefore, able to digest and develop activities in the whole value chain one by one.

Prolonged protection and entry restriction to “targeted” industries resulted in the late entry of Korean firms to international R&D competition in the 1980s, when world economic growth slowed down. This implies that, compared with Japanese firms, the payback period of the R&D investment by Korean firms was longer, resulting in another disadvantage for Korean firms.

Furthermore, prolonged protection and the late and weak enforcement of the Antitrust Policy that allowed cross-financing among chaebol-affiliated companies created fierce rivalry among chaebol groups. This rivalry, however, only invited redundant investments in...
Table 1
Comparison of the post-World War II industrial policies of Japan and Koreaa,b

<table>
<thead>
<tr>
<th>R&D specific policy</th>
<th>Japan</th>
<th>Korea</th>
<th>Lag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall R&D promotion</td>
<td>Existed pre-war</td>
<td>1972, expanded 1977, 1981</td>
<td>32</td>
</tr>
<tr>
<td>Licensing (approval) of foreign technology imports</td>
<td>1949–1968</td>
<td>1962</td>
<td>13</td>
</tr>
<tr>
<td>R&D subsidies</td>
<td>Existed pre-war, restarted</td>
<td>1967</td>
<td>27</td>
</tr>
<tr>
<td>Accelerated depreciation of R&D equipment</td>
<td>1952</td>
<td>1974</td>
<td>22</td>
</tr>
<tr>
<td>Special deductions on foreign technology transactions</td>
<td>1966</td>
<td>1981</td>
<td>15</td>
</tr>
<tr>
<td>Cooperative R&D</td>
<td>1959</td>
<td>1982</td>
<td>23</td>
</tr>
<tr>
<td>Low-interest loan for R&D</td>
<td>1951</td>
<td>1976</td>
<td>25</td>
</tr>
<tr>
<td>Import policy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foreign exchange allocation for machinery imports</td>
<td>1949–1965</td>
<td>1967</td>
<td>18</td>
</tr>
<tr>
<td>Abolition of import restriction: color TV (G)</td>
<td>1964</td>
<td>1985</td>
<td>21</td>
</tr>
<tr>
<td>Abolition of import restriction: automobile (G)</td>
<td>1965</td>
<td>1987</td>
<td>22</td>
</tr>
<tr>
<td>Abolition of import restriction: integrated circuit (G)</td>
<td>1974</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Abolition of import restriction: computer (G)</td>
<td>1975</td>
<td>1984</td>
<td>9</td>
</tr>
<tr>
<td>Foreign direct investment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inward FDI restriction (in general)</td>
<td>1950–1973</td>
<td>1960</td>
<td></td>
</tr>
<tr>
<td>FDI liberalization: automobile (G)</td>
<td>1971</td>
<td>1985</td>
<td>14</td>
</tr>
<tr>
<td>FDI liberalization: integrated circuit (G)</td>
<td>1973</td>
<td>1984</td>
<td>11</td>
</tr>
<tr>
<td>FDI liberalization: computer (G)</td>
<td>1975</td>
<td>1986</td>
<td>15</td>
</tr>
<tr>
<td>FDI liberalization: information processing (G)</td>
<td>1976</td>
<td>1991</td>
<td>15</td>
</tr>
<tr>
<td>Industrial structure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entry restriction to machinery industry</td>
<td>Did not exist</td>
<td>1967</td>
<td></td>
</tr>
<tr>
<td>Entry restriction to electronics industry</td>
<td>Did not exist</td>
<td>1990</td>
<td></td>
</tr>
<tr>
<td>Automotive industry promotion</td>
<td>Existed pre-war, 1951–1971</td>
<td>1962</td>
<td>11</td>
</tr>
<tr>
<td>Shipbuilding industry promotion</td>
<td>1966–1985</td>
<td>1975</td>
<td>9</td>
</tr>
<tr>
<td>Computer industry promotion</td>
<td>1957–1985</td>
<td>1986</td>
<td>12</td>
</tr>
<tr>
<td>Steel industry promotion</td>
<td>1946–1980</td>
<td>1990</td>
<td>23</td>
</tr>
<tr>
<td>Introduction of the Antitrust Law (G)</td>
<td>1947, strengthened 1977</td>
<td>1980</td>
<td>33</td>
</tr>
<tr>
<td>National Research Institutes</td>
<td>1882</td>
<td>1959</td>
<td>77</td>
</tr>
<tr>
<td>Establishments of National Research Institutes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General indicator</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joined IMF</td>
<td>1952</td>
<td>1955</td>
<td>3</td>
</tr>
<tr>
<td>Joined World Bank</td>
<td>1953</td>
<td>1955</td>
<td>3</td>
</tr>
<tr>
<td>Joined GATT</td>
<td>1955</td>
<td>1967</td>
<td>12</td>
</tr>
<tr>
<td>Became IMF Article 8 country (G)</td>
<td>1964</td>
<td>1988</td>
<td>24</td>
</tr>
</tbody>
</table>

b G indicates a "graduation" from restrictive policies. The last column is the time lag between Japanese and Korean policies. Pre-war policies are assumed to have started in 1940.
capacity expansion with similar technologies among chaebol groups, instead of forcing them to compete in R&D. At least three policy initiatives could be identified to have affected these tendencies. First, entry restrictions in most of the targeted industries induced the chaebol-affiliated companies to expand production capacity in order to dwarf rivals or even preempt them from entering the industry. Second, most of the industry promotion programs such as low-interest export financing were linked to firms’ sales volume, which induced companies to expand facilities to quickly capitalize on these incentives. Third, the cost of capital to invest in capacity expansion in targeted industries was low due to governmental subsidies, reducing the incentive to compete at the technology frontier through R&D investment.

The business–government relationship in Korea has a number of important differences to that in Japan. Korean government technocrats have almost unchecked power in setting policy guidelines, while Japanese government officers must go through the laborious process of developing consensus among concerned ministries and between the government and business sectors. In addition, the size of the Korean economy is only one-eleventh that of Japan in terms of GNP, thus the Korean government does not have the kind of affluence that its Japanese counterpart may dwell on. Adding to the budgetary limitation is the relatively shallow pool of engineers, who do not have as much industrial experiences as their Japanese counterparts. These factors are combined to result in the third characteristic: top-down processes in decision making by the government. In Japan, there is a system, though sometimes nominal, which channels the voice of the business sector to government policy-makers. The most notable channel is “deliberation councils”, in which government officials, academics, and business representatives discuss and coordinate policies. In Korea, such a communication channel exists, but is does not work in a way that facilitates information exchange. Some Korean industry experts have suggested that the Korean government seeks its own objectives without inputs from the private sector.14 It is, therefore, quite difficult to formulate a detailed and effective R&D promotion policy in Korea.

Until 1981, the Korean government, therefore, set its own R&D policy, and utilized government-sponsored research institutes as major sources of R&D activities and technology development (Lee et al., 1996). As we discuss in the next section, the Korean government began to lean toward government-initiated and -sponsored cooperative R&D with the 1981 amendment of the Technology Development Promotion Law.

4. Cooperative R&D in Japan and Korea

In this section, we focus on government-sponsored R&D consortia, one of the major R&D promotion tools. Government-sponsored R&D consortia in this article include all significant company-to-company cooperative R&D projects formed with a varying degree of government involvement.

The promotion of cooperative R&D in Japan started in 1959, when MITI and aircraft makers launched the YS-11 turboprop aircraft development project. In 1961, a formal scheme to promote cooperative R&D efforts was established as the Act of the Mining and Manufacturing Industry Technological Research Association. Under the Act, which was modeled after the British Research Associations initiated in 1917 and later adopted by Germany, France and Sweden, firms can pool researchers and funds into non-profit Mining and Manufacturing Technological Research Associations (TRAs hereinafter). The formation of TRAs was intended to promote R&D consortia as a means of coping with trade liberalization and to enhance the productivity of Japanese industries. At that time, Japan faced the task of abolishing protective policies for domestic industries following these industries’ recovery from the devastation of the second World War.

Under this scheme, participating companies enjoyed several tax benefits on their research expenses. Typical tax benefits included accelerated depreciation for expenses on machinery and equipment, instant depreciation of fixed assets for R&D, and discounts of property taxes on fixed assets used for R&D (the Council of the Mining and Industry Technology Research Association, 1991). The TRAs system was introduced as a substitute for direct R&D subsidies to individual companies, which the Japanese government had to phase out as Japan prepared to join the league of developed countries and to abolish protective policies. After the scheme of TRAs was introduced, the amount of R&D

14 Interview with a senior R&D executive of a major chaebol, September 1997.
subsidies to individual companies has indeed considerably declined, and in order for firms to receive significant amounts of R&D subsidies, they need to form R&D consortia.

TRAs are not the only form of cooperative R&D in Japan. Other organizational forms for cooperative R&D include foundations and corporations. These forms are chosen by participants on the basis of each form’s financial and organizational benefits (for details of different types of cooperative R&D, see Sakakibara, 1997b). We documented 237 R&D consortia that existed in Japan between 1959 and 1992. It is not only MITI, but also many other ministries that are involved in the formation and operation of these consortia.

The promotion of Korean cooperative R&D started in 1982. The government introduced the Industrial Research Association (IRA) system, which was modeled after the Japanese TRAs system. Under each industry-based IRA, many specific consortia were formed. MOST started this initiative, but later other ministries are involved. We documented 190 R&D consortia that existed in Korea between 1982 and 1997. Unlike in Japan, IRA has been the dominant form of cooperative R&D in Korea. The Korean government provided the participants of IRA with various incentives such as exemptions of military obligations for male researchers, accelerated depreciation of R&D investment, etc. Multiple consortia proliferated within each industry-based IRA, as each consortium was formed on a product basis. The Korea Software Development IRA has led other IRAs with 21 consortia.

A notable development occurred in 1986, when MOST introduced large-scale cooperative R&D projects mainly in the electronics and information areas. The Electronics and Telecommunications Research Institute, a government R&D institute, served as a coordinator, and only large members in electronics-related IRAs participated in these consortia.

Though the basic systems of government-sponsored R&D consortia in Japan and Korea are similar, the implementation has been very different between the two countries. Fig. 5 illustrates that the total budget for R&D consortia has been much larger in Japan than Korea. The Korean budget has not exceeded 10% of that in Japan in any year before 1991, and it is in 1991 when the Korean budget finally reached 11.6% of that in Japan.

Comparisons between Figs. 6 and 7 show interesting differences in the industry composition of the R&D consortia in both countries. Fig. 6 shows that, in
Japan, the electronics and machinery industries were the major industries in terms of their share of the total consortia budget during 1959 and 1992. There are, however, R&D consortia in materials, chemicals, and energy industries that account for a large share of the budget, followed by transportation equipment and information industries. Fig. 7 reveals that the electronics and machinery industries also take the lion’s share in the Korean R&D consortia. These two industries accounted for 75% of the total consortia budget in Korea from 1993 to 1997 however, while the share of these two industries in the total consortia budget
Table 2
Comparison of government-sponsored R&D consortia in Japan and Korea

<table>
<thead>
<tr>
<th>Country</th>
<th>Column 1</th>
<th>Column 2</th>
<th>Column 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of consortia</td>
<td>237</td>
<td>190</td>
<td>19</td>
</tr>
<tr>
<td>Number of participants (firms)</td>
<td>1181</td>
<td>349</td>
<td>206</td>
</tr>
<tr>
<td>Average total budget per project (in 1985 dollar)</td>
<td>US$ 60.7 million</td>
<td>US$ 4.2 million</td>
<td>US$ 19.8 million</td>
</tr>
<tr>
<td>Average number of participants per project</td>
<td>14.8</td>
<td>3.4</td>
<td>12.3</td>
</tr>
<tr>
<td>Average number of projects per firm</td>
<td>3.0</td>
<td>1.8</td>
<td>1.1</td>
</tr>
<tr>
<td>Maximum number of projects per firm</td>
<td>75</td>
<td>16</td>
<td>5</td>
</tr>
<tr>
<td>Average duration (years)</td>
<td>6.9</td>
<td>3.8</td>
<td>9.6</td>
</tr>
<tr>
<td>Average government contribution (%)</td>
<td>66</td>
<td>40</td>
<td>44</td>
</tr>
</tbody>
</table>

Source: see Appendix A.

In Japan was much less, 60% of the total from 1970 to 1992. Between 1993 and 1997, the electronics and machinery industries accounted for 55% of Korean R&D expenditures, which indicates that the Korean government concentrated its efforts to promote R&D in those industries to an extent that is greater than their current share in R&D. Examining the underlying R&D structure, Korean R&D efforts are more concentrated in a smaller number of industries than in Japan and the US. The efforts by the Korean government to promote R&D consortia, therefore, might even increase the skewness of the R&D structure.

There are tradeoffs that are made when the concentration of R&D consortia is limited to certain industries. Concentration allows a country to allocate scarce resources to a few selected industries. This is important for a small country with limited R&D resources. On the other hand, concentration works against the purpose of promoting R&D consortia as a means to create the seeds for the next-generation of technology. Especially considering how difficult it is to predict which industry will lead the global economy in the future, a rational choice for governments in formulating R&D promotion policies might argue against concentrating on a limited number of industries. Our interpretation of the choice made by the Korean government is that it believed, just as the US and European governments, that the Japanese government focused on a limited number of industries (such as semiconductors) to provide support for R&D consortia. When the "targeted" industries succeeded, the Koreans followed the perceived Japanese model.

Table 2 further investigates the organizational differences of R&D consortia between Japan and Korea. Comparisons between column 1 and 2 illustrate Korean R&D consortia are very small, the average budget per project is merely 7% of the size of Japanese projects. Interestingly, this difference in the size of consortia for each country is above and beyond the difference in the size of its economy, suggesting that the Korean government even fragmented its support to R&D consortia. The Korean smaller size is also evident in the number of participants per consortia. On average, only 3.4 participants in Korea contrast to 14.8 in Japan. In addition, 78 out of the 190 Korean R&D consortia have only two participants. Moreover, the participants of Korean R&D consortia include 25 Universities and National Research Institutes (with 56 project–participant pairs), rendering the actual cooperation between companies even more limited. A firm can participate in multiple R&D consortia in both countries, but on average, the extent of multiple participation is rather limited. The average number of projects per firm is 1.8 in Korea versus 3.0 in Japan. In both countries, there are many participants that participate in only one project, while there are a number of active participants that participate in many projects.

16 Between 1987 and 1996, for example, the coefficient of variation (which indicates how the distribution is skewed) of Korean R&D expenditures by industry is 2.5 on average, compared with 1.7 in Japan and 1.1 in the US.

17 In the Japanese consortia, when Universities and National Research Labs are a part of a project, they typically take an advisory role.
Table 3
Examples of cooperative R&D projects in Japan and Korea

<table>
<thead>
<tr>
<th>Japan 1992</th>
<th>Korea 1992</th>
<th>Japan in the 1960s and in the early 1970s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atomic-level processing technology</td>
<td>Development of trolley wire</td>
<td>Mainframe computer (FONTAC project)</td>
</tr>
<tr>
<td>Real world computing</td>
<td>Development of LED printer head chip</td>
<td>Aluminum surface processing</td>
</tr>
<tr>
<td>Optic measurement equipment for organics</td>
<td>Development of stepping motor for FDD</td>
<td>Car emission/safety control system</td>
</tr>
<tr>
<td>Interpretation equipment for communications</td>
<td>Small-sized map information system</td>
<td>Safety technology for medical equipment</td>
</tr>
<tr>
<td>Image media communication equipment</td>
<td>Development of control motor for car</td>
<td>Direct steel-making by high temperature reducing gas</td>
</tr>
</tbody>
</table>

* Source: see Appendix A.

especially in Japan. The most active consortia participant in Korea, Hyundai electronics, has participated in 16 consortia, while the most active Japanese participant, Hitachi, has participated in 75 consortia. These active participants tend to be R&D-intensive companies.

A typical Korean R&D consortium has a limited time span. The average duration of Korean consortia is 3.8 years, almost half of the duration of their Japanese counterparts, 6.9 years. In terms of government contributions, the Japanese government’s share of 66% is larger than the Korean government’s share of 40%.18 These findings imply that Korean R&D consortia did not realize economies of scale in R&D, and played a limited role in promoting R&D cooperation and knowledge-sharing among participants, relative to the Japanese. If, for example, the Korean government wished to achieve economies of scale in R&D consortia, it could promote fewer numbers of consortia, making the scale of each consortium larger. The Korean government could also increase the number of participants per project by limiting the number of consortia it promotes if its purpose is to increase the knowledge flow among participants. Nevertheless, whether the Korean government was unwilling or unable to increase the average size of a consortium requires further investigation. Based on the interview results with high-ranking government officials, senior managers and researchers in participating firms, our current conclusion is that Korean firms are hesitant to cooperate with one another, resulting in a fragmented consortium structure. The reasons behind the lack of cooperation will be explored in Section 5.

One might argue that the differences between Japanese and Korean R&D consortia are due to the difference in the development stage of R&D. Column 3 in Table 2 summarized the characteristics of Japanese R&D consortia in the 1960s. A comparison between column 1 and 3 gives partial support to this argument. The Japanese R&D consortia had smaller budgets and fewer participants in the 1960s than in the later period. It is still the case, however, that the average size of Japanese consortia in the 1960s is larger than the average size of Korean consortia. On average, Japanese consortia at that time were almost five times larger in terms of the budget and four times larger in terms of the number of participants. The average duration was also much longer.

One might also argue that the knowledge-sharing function is not important for Korea because companies have not accumulated enough R&D capabilities to share. Even if that argument holds, there is evidence that economies of scale at the research project level have a significant impact on research productivity (Henderson and Cockburn, 1996). The Korean government could compensate for smaller-sized Korean R&D expenditures by promoting larger-scale projects.

The nature of R&D consortia also widely differs between the two countries. Table 3 shows examples of cooperative R&D project in Japan and Korea in 1992 and Japanese projects in the 1960s and in the early 1970s. Though it is difficult to precisely compare the type and goal of R&D consortia in Japan and Korea, Table 3 shows that Korean R&D consortia in 1992 focused on much more applied, industry specific technologies with a clear goal that other countries have already proved. In contrast, the focus of Japanese consortia in the same year is more basic R&D with results

18 As explained later, a reason of the higher share of the Japanese government is that the Japanese consortia focused on more basic R&D than what Korean consortia targeted.
that can be applied to many industries. Korean consortia in 1992 resemble Japanese consortia in the 1960s rather than in the 1990s.

In order to evaluate the effectiveness of R&D consortia, it is necessary to conduct in-depth econometric analyses. Branstetter and Sakakibara (1998) have shown that Japanese government-sponsored R&D consortia have a small but positive effect on the innovation efforts of participating firms. They found that if a firm participates in an additional project per year, it would raise its total R&D spending by 2% and its research productivity by between 4 and 8%. Since firm-level R&D data for Korean firms are not readily available, it is difficult to conduct similar analyses on Korean R&D consortia. Given the lack of scale economies and the limited number of participants per project, however, Korean R&D consortia do not have the basic conditions to benefit from R&D cooperation equivalent to the Japanese level.

5. Organizational implications

The differences in R&D consortia between Japan and Korea identified in the previous section result from organizational and institutional differences between the two countries. The first difference is the business organizations. Business groups formed much later in Korea than in Japan, and the founders of these groups still play active management roles in most cases. The organizational structure of chaebols is similar to the prewar zaibatsu groups in Japan, with more centralized decision making than keiretsus (IEBM, 1999). The control of owner families is stronger in chaebols than in zaibatsu groups that are more institutionalized. The rivalry among chaebols is, therefore, realized at a personal level, making cooperation among firms very difficult. For example, there is anecdotal evidence that the entry of Samsung into the auto industry is more of a personal decision by Samsung Chairman Kun-Hee Lee, who displayed his combative spirit vis-à-vis that of Chairman Joo-Young Chung of Hyundai, than a rational business decision.

The second difference is related to history. Korean R&D consortia did not start until 1982. In contrast, in Japan, with a 40-year history of cooperative R&D, the same set of firms typically participate repeatedly in different cooperative R&D projects. Sakakibara (1997b) argues that in the repeated game situation, a one-time gain from cheating, such as withholding technical information from other participants while absorbing information from others, can be easily outweighed by the punishment of being excluded from subsequent cooperative R&D projects. Also, even if different types of punishment are not enforceable within cooperative R&D games (since firms might voluntarily decide not to participate in additional projects), the threat of punishment in the product market can make cooperation sustainable. This is an implication from Bernheim and Whinston (1990), in which they found that multimarket contacts make cooperation more sustainable even if cooperation in a single market breaks down. Moreover, Baumol (1993) argued that cheating in cooperative R&D can be easily detected in a repeated game situation, and punishment to exclude a cheater from the following projects is very costly for the cheater. In Korea, with its short history of cooperative R&D and the limited extent of cooperation among firms, it would be more difficult to achieve sustained cooperation in R&D consortia.

Not only the history of R&D consortia, but also the history of R&D and its development stage affect the nature of the cooperation. With a short history of R&D, Korean firms have not developed cutting-edge R&D capabilities. They are more concerned with applied technology, the reason why the majority of Korean R&D consortia takes place in that field. However, R&D cooperation in applied technology is stifled because firms are hesitant to share knowledge that might advance competitors in current and future markets. Herein lies the distinction between Korean R&D consortia and the Japanese. Even in the 1975 Japanese VLSI project that was widely regarded as targeting applied technology, the targeted technology was indeed three generations ahead of existing technology (Ouchi, 1984), successful in facilitating cooperation among participants. The goal-setting in Korean R&D consortia, however, was not adequate to induce effective cooperation.

The third difference is capabilities of member firms. In Korea, all the chaebols have pursued similar
research goals, and internal technological development is still limited. The technological knowledge possessed by firms is therefore similar. Sakakibara (1997a) identified that the sharing of complementary knowledge is the single most important motive for participants of Japanese government-sponsored R&D consortia. Sakakibara (2001) also shows if the R&D contributes not only to firms’ rates of innovation but also to their capacities to learn from others, then firms are willing to share knowledge in an R&D consortium when firms possess highly complementary knowledge, and private R&D investment also increases. This finding indicates the importance to have member firms with heterogeneous capabilities in an R&D consortium. In Korea, in contrast, there are limited learning opportunities from other participants through R&D cooperation, which further discourages firms to participate in R&D consortia.

The fourth difference is the business–government relationship. In Korea, an antagonistic business–government relationship has developed, which prevented the government from forming effective R&D cooperation policies that can be acceptable to potential participants. In Japan, though it is not always effective, the channel between business and government in the formation of industrial policies has worked to create R&D promotion policies worth implementing.

6. Conclusion

In this article we examine and evaluate Japanese and Korean industrial policies aimed at promoting the research activities of firms with a specific focus on government-sponsored R&D consortia. We contribute to the literature by documenting and comparing R&D promotion policies and R&D consortia in both countries, and investigating the nature and the sources of their differences. In particular, this paper is the first to document the comprehensive data of Korean R&D consortia, make a detailed comparison with matching Japanese data, and explore why the differences occurred.

Examinations of Korean R&D expenditures and patent generation reveal that it is only in the 1990s when Korean R&D efforts finally became comparable to developed countries, while at the same time its R&D performance in absolute terms still lags behind major countries including Japan. The majority of Japanese protective industrial policies ended by the early 1970s, and Japanese firms conducted active in-house R&D while they aggressively imported and digested technologies from western countries in the early post-war era. Japanese R&D promotion policies started in the early post-war period, while Korean R&D promotion policies were introduced 20–30 years later. In contrast to the Japanese case, Korean protective industrial policies prolonged and encouraged the duplication of technological capabilities among the major chaebols. Prolonged protective policies also resulted in the late entry of Korean firms to international R&D competition, adding another disadvantage for Korean firms.

Korean R&D consortia are concentrated in the electronics and machinery industries, and they did not fully promote R&D cooperation, knowledge-sharing, or scale economies equivalent to the Japanese level, even the level reached by Japan in the 1960s. Personal rivalry among chaebol leaders, limited learning opportunities, limited resources, the short history of R&D and R&D cooperation, inadequate goal-setting, and the antagonistic business–government relationship contributed to the relative ineffectiveness of Korea’s
R&D consortia. In other words, the organizational and institutional structure, which developed under Korean industrial policy, became an obstacle to the effective implementation of cooperative R&D.

Overall, this article reveals the limitation of the Korean policies that are largely based on imitation of the Japanese policies. This article, therefore, has important implications to many developing countries, especially other Asian countries which try to emulate the two Asian high-performers. First, policy-makers need to decide whether they should concentrate their resources on a few selected industries or spread the resources among a number of seemingly important industries in the future. Second, accumulation of technology through R&D takes time. It requires perseverance on the part of the government as well as the private sector. As Korea would not easily catch-up with Japan after only 20 years (it took Japan over 40 years to achieve its current levels of success), so would other late-coming countries not easily catch-up with either Japan or Korea. Third, learning takes place when participants have different resource bases. The composition of the membership of the consortium is important for its subsequent performance. More importantly, the economy of a country should be composed of companies with diverse and heterogeneous profiles if it would like to achieve technological progress. Nurturing large and similarly structured companies such as chaebols as engines of economic and technological growth might have been an efficient way for a quick catch-up in the 1960s and 1970s, but a downside of this strategy might be more apparent in the 2000s. Fourth, fundamental conditions that facilitate cooperation and communication between the government and private sectors are very important to the success of government-sponsored R&D consortia. Unless there is a mechanism based on which the amicable relation between the two major players of a national economy is established as a routine, one cannot expect to reap the full benefit of such an innovative vehicle for technology development.

There are limitations to this study. First, the outcomes of R&D consortia in Japan and Korea should be compared in order to evaluate the effectiveness of this particular R&D promotion policy. We are currently conducting surveys with Japanese and Korean R&D consortia participants to examine their evaluations of R&D consortia, hoping to discover differences in motives, organizations, and outcomes of R&D consortia at a more detailed level.

Similarly, differences in the performance of R&D promotion policies between Japan and Korea should be evaluated by measuring increased R&D productivity in particular and increased productivity in general, and how much of the progress is attributable to the industrial policy. In order to examine these issues, we need to obtain disaggregated R&D input and output data by industry for both countries, which are not readily available from publicly available sources.

In addition, though we compare R&D consortia in Japan and Korea by using very comprehensive and detailed data, our comparison is limited at the consortium level. The comparison of the size and characteristics of participating firms would inform us more about the nature of the differences of consortia in both countries. Data limitation precludes us from conducting such analysis, however. Many Japanese consortia participants are not publicly traded, hence we cannot obtain data for those companies. For Korean participants, we have more severe constraints to obtain firm-level data.

Further research on the issue of cooperative R&D is necessary and encouraged. In the analysis of Korean R&D consortia, we illustrated possible causes of the limitations of their practices. Case studies on some of representative consortia would help us understand exactly why these limitations occurred. More broadly, it is important to conduct in-depth studies on R&D promotion policies in other countries, especially Asian countries, which adopted different types of government involvement. We need to understand under what circumstances these R&D promotion policies work, and to identify necessary organizational and institutional conditions that make R&D promotion policies successful.

Acknowledgements

We are grateful to Hiroyuki Abe, Yukiko Fukagawa, Fumio Kodama, Arie Lewin, David McKendrick, Hw-y-Chang Moon, Kulwant Singh, Kenneth Sokoloff, Udo Zander, anonymous referees and participants at the 1999 Seoul National University Conference on "From Innovative Management to New Organization".
the Symposium on the East Asian Economy by the Ministry of International Trade and Industry Research Institute, Japan, the 74th Annual International Conference of the Western Economic Association, and the 1999 Annual Meeting of the Academy of International Business for helpful comments. We would also like to thank Lawrence Lau and Jungsoo Park for providing the R&D statistics of Korea and Taiwan, and Ina Kang, Kyongchul Kim, Janghoon Kim and Heather Berry for research assistance. Sakakibara is grateful to the Pacific Rim Research Program of the University of California and UCLA International Studies and Overseas Programs for their financial support.

Appendix A. Data sources

A.1. R&D expenditure

Germany: Bundesbericht Forschung, Faktenbericht zum Bundesbericht Forschung, BMFT, France: Attachment to the Budget Proposal, France.

A.2. GDP, GDP deflator

A.3. Exchange rate

A.4. R&D consortia

Japan: The 30-Year History of the Mining and Industry Technology Research Associations by the Council of the Mining and Industry Technology Research Association, 1991, brochures of each project type, issued by MITI and its affiliated organizations, and hearings from each governmental organization.
Korea: The 30-Year History of Science and Technology, Ministry of Science and Technology, 1997, Report on the Survey of Research and Development, Ministry of Science and Technology, various years, hearings from each governmental organization.

References

Ministry of Science and Technology (Korea), 1997. The 30-Year History of Science and Technology. MOST, Seoul, Korea.

OECD, 1996. Main Science and Technology Indicators. OECD, Paris, France.

